
Orbtrace

Orbcode

Jun 26, 2023

CONTENTS

1 Purpose 3

2 USB Trace Interface 5
2.1 Control Requests . 5
2.2 Protocols . 6

3 USB Power Interface 7
3.1 Control Requests . 7

4 USB Version Interface 9
4.1 Control Requests . 9

5 USB Control Proxy Interface 11
5.1 Control Requests . 11

6 Documentation 13
6.1 Editing . 13
6.2 Style . 13

7 Indices and tables 15

i

ii

Orbtrace

Orbtrace is a lightweight, cost effective, USB2-HS Debug and Trace interface for ARM CORTEX-M processors. It
allows you to debug your code on target using CMSIS-DAP and, optionally, to extract Debug and Trace data from it in
real time, according to the Arm Debug Interface Architecture Specification ADIv5.

CONTENTS 1

https://arm-software.github.io/CMSIS_5/General/html/index.html
https://documentation-service.arm.com/static/5f900b1af86e16515cdc0642

Orbtrace

2 CONTENTS

CHAPTER

ONE

PURPOSE

Orbtrace performs two essential functions, with a number of other supporting bits and pieces around the edges. Specif-
ically it;

1. Presents a Debug Interface to which CMSIS-DAP v1 or v2 compliant interface software can attach, to control
and debug a target device over either a SWD or JTAG interface.

2. Collects data from the Parallel Trace Port of the target device over a 1, 2 or 4 bit interface and presents it to
software on the host PC. These data can be used for reporting on the progress of the software running on the
target device, and optionally to reconstruct it’s recent actions.

In addition to the above, Orbtrace can also, depending on the hardware it’s running on, provide power to the target and
measure its current consumption during program execution. It can also provide secondary serial links. All of these
data streams are carried over a single USB2-HS communnication link between Orbtrace and the host PC.

The normal connection between Orbtrace and the target is the 2x10-way 0.05” connector you will see on the target
PCB. When doing debug only (i.e. no tracing functions) then the smaller 2x5-way 0.05” connector is typically used
instead. Details on these connectors are available from the Keil Website.

In respect of (1) above, typically software that would communicate with Orbtrace would be BlackMagic Probe or
PyOCD. These would then connect to a debugger such as gdb.

In respect of (2) above, exploiting the trace flow from Orbtrace, the reader is directed to the Orbuculum suite for detailed
information.

3

https://www2.keil.com/coresight/coresight-connectors
https://github.com/blacksphere/blackmagic
https://github.com/pyocd/pyOCD
https://github.com/orbcode/orbuculum

Orbtrace

4 Chapter 1. Purpose

CHAPTER

TWO

USB TRACE INTERFACE

The trace interface is identified by bInterfaceClass = 0xff and bInterfaceSubclass = 0x54 ('T'). It may
have multiple alternate settings with different bInterfaceProtocol values to support different trace protocols. Host
software negotiates protocol by reading the list of supported alternate settings and selecting the preferred one.

2.1 Control Requests

Control requests are vendor-specific interface-directed, i.e. with bmRequestType = 0x41 or 0xc1 and the lower
half of wIndex containing bInterfaceNumber.

2.1.1 Set Input Format

bmRequestType bRequest wValue wIndex wLength
0x41 0x01 Type bInterfaceNumber 0

Type Description
0x00 Disabled
0x01 1-bit synchronous
0x02 2-bit synchronous
0x03 4-bit synchronous
0x10 Manchester asynchronous (ITM)
0x11 Manchester asynchronous (TPIU)
0x12 NRZ asynchronous (ITM)
0x13 NRZ asynchronous (TPIU)

2.1.2 Set Async Baudrate

bmRequestType bRequest wValue wIndex wLength
0x41 0x02 0x00 bInterfaceNumber 4

Payload is baudrate as a 32-bit little endian integer.

5

Orbtrace

2.2 Protocols

2.2.1 Undefined

bInterfaceClass bInterfaceSubclass bInterfaceProtocol
0xff 0x54 0x00

Trace interfaces with undefined protocol should be used by devices not aware of the format of the data stream (e.g.
when capturing raw SWO). In this case, the user is expected to manually configure the host software for the correct
format.

2.2.2 TPIU

bInterfaceClass bInterfaceSubclass bInterfaceProtocol
0xff 0x54 0x01

This protocol uses one endpoint that will send one or more 16-byte TPIU frames per transfer. TPIU frames are aligned
to USB transfer boundaries.

2.2.3 ITM

bInterfaceClass bInterfaceSubclass bInterfaceProtocol
0xff 0x54 TBD

TBD

2.2.4 ETM

bInterfaceClass bInterfaceSubclass bInterfaceProtocol
0xff 0x54 TBD

TBD

2.2.5 ITM + ETM

bInterfaceClass bInterfaceSubclass bInterfaceProtocol
0xff 0x54 TBD

This protocol provides both an ITM and an ETM endpoint. Refer to the respective sections for details.

6 Chapter 2. USB Trace Interface

CHAPTER

THREE

USB POWER INTERFACE

The power interface is identified by bInterfaceClass = 0xff and bInterfaceSubclass = 0x50 ('P').

3.1 Control Requests

Control requests are vendor-specific interface-directed, i.e. with bmRequestType = 0x41 or 0xc1 and the lower
half of wIndex containing bInterfaceNumber.

3.1.1 Set enable

bmRequestType bRequest wValue wIndex wLength
0x41 0x01 Enable Channel << 8 | bInterfaceNumber 0

Channel Description
0x00 VTREF
0x01 VTPWR
0xFF All channels

3.1.2 Set voltage

bmRequestType bRequest wValue wIndex wLength
0x41 0x02 Voltage Channel << 8 | bInterfaceNumber 0

Channel Description
0x00 VTREF
0x01 VTPWR

Voltage is expressed in millivolts.

7

Orbtrace

3.1.3 Get status

bmRequestType bRequest wValue wIndex wLength
0xc1 TBD TBD bInterfaceNumber TBD

8 Chapter 3. USB Power Interface

CHAPTER

FOUR

USB VERSION INTERFACE

The version interface is identified by bInterfaceClass = 0xff and bInterfaceSubclass = 0x56 ('V').

The interface string of the version interface contains the version of the current gateware build, as per git describe
--always --long --dirty.

Example: Version: v1.0.0-0-g3ad3fa4

4.1 Control Requests

The version interface currently has no defined control requests.

9

Orbtrace

10 Chapter 4. USB Version Interface

CHAPTER

FIVE

USB CONTROL PROXY INTERFACE

The control proxy interface is identified by bInterfaceClass = 0xff and bInterfaceSubclass = 0x58 ('X').

Certain operating systems (e.g. Windows) disallows issuing control requests to an interface that’s already claimed for
bulk transfer by another process. To allow e.g. configuring the USB Trace Interface while it’s already opened for
capture, this interface is provided as a workaround.

5.1 Control Requests

Control requests are vendor-specific interface-directed, i.e. with bmRequestType = 0x41 or 0xc1 and the lower
half of wIndex containing the bInterfaceNumber of this interface.

bRequest has a range for each supported target interface with an associated offset. When a request is handled, the
offset is subtracted from bRequest and the request is forwarded to the target interface’s handler.

bRequest range Offset Target interface
0x01 - 0x0f 0x00 USB Trace Interface

11

Orbtrace

12 Chapter 5. USB Control Proxy Interface

CHAPTER

SIX

DOCUMENTATION

Orbtrace must be properly documented! The documentation is maintained at Read The Docs and is auto-built from the
committed github main repository.

6.1 Editing

Edit the contents of docs/source/*.rst to update the documentation. If you have the Sphinx Documentation Gen-
erator installed locally you can get a live preview of the current code by running something like;

`sphinx-autobuild --port 1232 ~/Develop/orbtrace/docs/source/ /tmp/sp`

. . . and then pointing your browser at localhost:1232.

6.2 Style

Documentation is not a tutorial, it’s there to tell users what to do, not nessesarily to teach them how to do it. Keep it
brief but content rich, and link to other sources whenever possible so folks aren’t left flapping in the wind.

13

https://orbtrace.readthedocs.io
https://www.sphinx-doc.org/en/master/
https://www.sphinx-doc.org/en/master/

Orbtrace

14 Chapter 6. Documentation

CHAPTER

SEVEN

INDICES AND TABLES

• genindex

• modindex

• search

15

	Purpose
	USB Trace Interface
	Control Requests
	Set Input Format
	Set Async Baudrate

	Protocols
	Undefined
	TPIU
	ITM
	ETM
	ITM + ETM

	USB Power Interface
	Control Requests
	Set enable
	Set voltage
	Get status

	USB Version Interface
	Control Requests

	USB Control Proxy Interface
	Control Requests

	Documentation
	Editing
	Style

	Indices and tables

